Aunque los procesos comerciales de obtención del polipropileno son variados, se les puede clasificar, dependiendo del medio de reacción y de la temperatura de operación, en tres tipos:

  • Procesos en solución
  • Procesos en suspensión
  • Procesos en fase gas

En la actualidad muchas de las nuevas unidades de producción incorporan procesos híbridos, en los que se combina un reactor que opera en suspensión con otro que opera en fase gas.

Los procesos en solución, prácticamente en desuso, son aquellos en los que la polimerización tiene lugar en el seno de un disolvente hidrocarbonado a una temperatura de fusión superior a la del polímero. Entre sus ventajas han contado con la fácil transición entre grados, gracias a la pequeña dimensión de los reactores empleados.

Los procesos en suspensión (slurry), están configurados para que la reacción tenga lugar en un hidrocarburo líquido, en el que el polipropileno es prácticamente insoluble, y a una temperatura inferior a la de fusión del polímero. Dentro de este tipo de procesos existen marcadas diferencias en la configuración de los reactores (de tipo bucle o autoclave) y en el tipo de diluyente utilizado, lo que afecta a las características de la operación y al rango de productos que se puede fabricar.

Los procesos en fase gas están caracterizados por la ausencia de disolvente en el reactor de polimerización. Tienen la ventaja de poderse emplear con facilidad en la producción de copolímeros con un alto contenido en etileno (en otros procesos se pueden presentar problemas al agregar altas concentraciones de etileno, puesto que se hace aumentar la solubilidad del polímero en el medio de reacción).

Destilación del Propileno

Unos de los métodos más utilizados para obtener el Propileno es la destilación a partir de G.L.P. (Gas Licuado de Petróleo) con una proporción mayoritaria de componentes livianos (Propano, Propileno, etc).

Destilación del Propileno

El proceso de destilación se compone de una serie de pasos que van eliminando los diferentes componentes no deseados hasta obtener Propileno.

Primero, se “dulcifica” la mezcla en la Merichem en la cual de separan componentes tales como Anhídrido carbónico o Mercaptanos.

Luego, se separan los componentes livianos en una columna de destilación “Deetanizadora”, tales como Metano, Etano o Nitrógeno.

Después de esto llega el paso más complejo, que es el de separar el Propileno del Propano, los cuales poseen un peso específico muy similar, por lo tanto se necesita una columna de destilación “Splitter” muy larga con gran cantidad de platos y con un sistema muy complejo de reflujo de condensado.

Para finalizar, se eliminan los últimos componentes residuales, como Arsina, y se obtiene el Propileno listo para polimerizar.

Nitrógeno 0,40%
Deetanizadora
Monóxido de carbono 5 ppm
Oxígeno 20 ppm
Metano 0,10%
Etileno 0,14%
Etano 0,85%
Propano 37,06%
Propileno 58,80%
Splitter
I-Butano 0,90%
N-Butano 0,15%
Butileno 1,51%
1-3 Butadieno 0,8%
Metil-Acetileno 0,12%
Propileno 0,12%
Anhídrido carbónico 50ppm
Merichem
Sulfhídrico 25 ppm
Mercaptanos 25 ppm
Sulfuro carbonilo 25 ppm
Arsina 1 ppm
Agua 50 ppm

Proceso Novolen

polopropileno novolen

El propileno, el etileno y/o alguno de los demás comonómeros utilizados se alimentan a los reactores. Se agrega hidrógeno para controlar el peso molecular en el medio de reacción. Se eligen las condiciones de polimerización (temperatura, presión y concentración de los reactivos) dependiendo del grado que se desee producir. La reacción es exotérmica, y el enfriamiento del reactor se realiza por la transferencia de calor por la descompresión (flash) de la mezcla de los gases licuados del reactor con las corrientes de alimentación. La evaporación de los líquidos en el lecho de polimerización asegura que el intercambio de calor extremadamente eficiente.

El polvo de polipropileno se descarga desde el reactor y se separa en un tanque de descarga a presión atmosférica. El comonómero sin reaccionar se separa del polvo y se comprime, y finalmente se recicla o se retorna aguas arriba a la unidad de destilación para su recuperación.

El polímero se pone en contacto con nitrógeno en un tanque de purga para despojarlo del propileno residual. El gas de purga se recupera, el polvo se transporta a los silos de polvo, y posteriormente por extrusión se convierte en pellets, donde se incorpora una gama completa de aditivos bien dispersados.

Proceso LIPP

Es un proceso similar al Novolen. Es el adoptado por Petroken S.A. para la producción de Homopolímeros.

polipropileno lipp

Consiste en hacer reaccionar el propileno junto con Hidrógeno y el catalizador en un reactor. Luego de terminado este paso, se separa el polipropileno de residuos de la reacción, como monómeros, catalizador, etc., los cuales son reflujados al reactor.

Luego se suceden los mismos pasos de terminación que en el proceso Novelen.

Proceso Spheripol

Para describir con más detenimiento los procesos, hablaremos de uno de los más empleados en la actualidad: el proceso Spheripol. Diseñado como híbrido con dos reactores en serie, el primero para trabajar en suspensión y el segundo en fase gas, es un proceso versátil, que permite preparar diferentes tipos de productos con propiedades óptimas. El primer reactor es de tipo bucle (o loop), en el cual se hace circular catalizador y polímero a gran velocidad para que permanezcan en suspensión en el diluyente. El diluyente es en realidad el mismo propileno líquido que, dadas las condiciones de operación, facilita la evacuación del calor generado por la reacción al mismo tiempo que permite aumentar el rendimiento del sistema catalítico. En el segundo reactor de fase gas se incorpora ulteriormente el polímero producido en el reactor loop. En esta fase se preparan grados con características especiales añadiendo un comonómero además del monómero. Tras separar el polímero fabricado de las corrientes de propileno, y de desactivar el catalizador, el polvo de polipropileno obtenido se envía a la línea de acabado donde se añaden aditivos y se le da la forma de granza requerida para su distribución comercial.

Polipropileno Spheripol

En el campo de los procesos, los últimos desarrollos han ido dirigidos a la optimización con objeto de mejorar las propiedades de los polímeros, aumentar las capacidades de producción y reducir costes. La adecuación del proceso al sistema catalítico empleado es un parámetro fundamental con vistas a este objetivo.

Lun, 15/08/2005 - 15:53