Puede decirse que existen tres tipos de aplicaciones de la superconductividad:

1) La producción de grandes campos magnéticos. Al decir grandes nos referimos tanto a una gran intensidad del campo magnético como al espacio en el cual se crea el campo.

2) La fabricación de cables de transmisión de energía. Aunque éstos ya se manufacturan a partir de los superconductores convencionales (no de los nuevos superconductores cerámicos), actualmente no son competitivos comercialmente con respecto a los cables aéreos normales, a menos de que cubran una gran distancia (de cientos de kilómetros). En los casos en que las líneas de transmisión deben ser subterráneas, habría cierta ventaja económica con la utilización de los cables superconductores.

3) La fabricación de componentes circuitos electrónicos. Estos dispositivos electrónicos fueron ideados originalmente con la intención de utilizar la transición de estado normal a estado superconductor como un interruptor, mas resultaron decepcionantes con respecto a los logros alcanzados por los transistores de películas delgadas y se ha abandonado su uso en este aspecto. Este panorama puede cambiar con el descubrimiento de los nuevos materiales superconductores cerámicos. Cabe mencionar que son de gran interés los dispositivos basados en la utilización del llamado efecto Josephson (que es el efecto de "tunelamiento" conocido por la mecánica cuántica, pero de corriente de superconductividad aun en ausencia de un voltaje aplicado). Resultan superiores a otras tecnologías y tienen un gran campo de aplicación que va desde la detección de señales del infrarrojo lejano que provienen del espacio exterior, hasta pequeñísimos campos magnéticos que se producen en el cerebro humano. También la corriente Josephson a voltaje cero depende fuertemente de un campo magnético aplicado, lo que lleva a la posibilidad de tener un interesante interruptor para circuitos lógicos en las computadoras.

La aplicación más importante, en cuanto a la cantidad de material empleado, es y será por mucho tiempo la producción de campos magnéticos, que se emplean, principalmente, en los laboratorios de física con fines de investigación, y es común ver pequeños electroimanes superconductores que sirven para producir campos magnéticos con intensidades del orden de 103 Oersted. Dentro de la investigación en el campo de la física, también se utilizan electroimanes superconductores para generar campos magnéticos altamente estables, útiles en los estudios de la resonancia magnética nuclear y la microscopía electrónica de alta resolución. Son muy utilizados en las cámaras de burbujas que sirven para la detección de partículas y que requieren campos magnéticos muy intensos.

Por otro lado, se espera que los motores y generadores superconductores tendrán enormes consecuencias en lo social y económico, en unos años más, pues para su elaboración se utilizan campos magnéticos intensos. También se desea utilizar electroimanes superconductores para la levitación de trenes de transporte de pasajeros o de carga.

Es conveniente señalar las propiedades que se requieren en los superconductores comerciales:

1) La mayor temperatura crítica posible. Esto se debe a que, cuanto mayor sea, más elevada podrá ser la temperatura de operación del dispositivo fabricado, reduciéndose de esta manera los costos por refrigeración requeridos para alcanzar el estado superconductor en operación.

2) El mayor campo magnético crítico posible. Como se pretende utilizar el superconductor para generar campos magnéticos intensos, mientras mayor sea el campo magnético que se quiere generar, mayor tendría que ser el campo crítico del material superconductor.

3) La mayor densidad de corriente crítica posible. A mayor densidad de corriente crítica que la muestra pueda soportar antes de pasar al estado normal, más pequeño podrá hacerse el dispositivo, reduciéndose, de esta manera, la cantidad requerida de material superconductor y también la cantidad de material que debe refrigerarse.

4) La mayor estabilidad posible. Es muy común que los superconductores sean inestables bajo cambios repentinos de corriente, de campos magnéticos, o de temperatura, o bien ante choques mecánicos e incluso por degradación del material al transcurrir el tiempo (como ocurre en muchos de los nuevos materiales superconductores cerámicos). Así que, si ocurre algún cambió súbito cuando el superconductor está en operación, éste podría perder su estado superconductor. Por eso es conveniente disponer de la mayor estabilidad posible.

5) Facilidad de fabricación. Un material superconductor será completamente inútil para aplicaciones en gran escala si no puede fabricarse fácilmente en grandes cantidades.

6) Costo mínimo. Como siempre, el costo es el factor más importante para considerar cualquier material utilizado en ingeniería y deberá mantenerse tan bajo como sea posible.

Lun, 15/05/2006 - 12:49